平台首页 > 动态汇总 > 机构动态 > 深圳国际竞赛培训机构排名精选名单出炉
在线客服科研探究吴博士华东理工物理化学博士,发表SCI论文16篇,科研方向:将人工智能、大数据分析、计算机仿真模拟等前沿科研方法运用于热力学和量子化学领域,有多年高中生竞赛学研指导、自招教学指导经验;曾指导多位学生进入PhysicsBowl美国“物理杯”竞赛全球前一百名,D1学生最高获得全球第六。
1、翰林国际教育竞赛辅导
2、数学辅导张博士美国罗切斯特大学理论数学博士,复旦大学上海数学中心博士后研究员,初中阶段获得全国初中数学联赛一等奖、化学联赛二等奖并保送重庆南开中学理科竞赛实验班,高一获得重庆市数学竞赛一等奖,全市第三名,高三获得全国高中数学联赛一等奖,生物联赛二等奖,7年理论数学的研究和相关教学经验,读博期间曾参与了大量AMC与美国大学生数学竞赛(Putnam、Virginia Tech等)的讲座与培训工作,回国后与教育机构合作辅导过多名参加AMC、AIME竞赛与申请美高数学营的学生,2020年所带三名申请美国顶级数学夏校Ross Mathematics Program的学生全部拿到offer,录取率100%。
3、数学辅导高老师清华本科,同济硕士,曾获全国高中数学联合竞赛上海赛区第三名,入围第29届中国数学奥林匹克竞赛(冬令营)并获得银牌,拥有扎实的数学竞赛背景和AMC教材的编写经验,课堂教学过程中注重知识点的深入拓展,能深入浅出的帮助学生总结归纳知识点,为学生进行个性化辅导,辅导多人晋级AIME。
4、生物辅导Dr. Michael Jin纽约大学医学院生物医学博士全奖并荣誉毕业,后分别在世界著名的研究机构澳大利亚Peter MacCallum癌症研究中心和加拿大阿尔伯塔儿童医院研究所从事博士后研究工作吗,2017年辅导的学员中有两名学员分别获得USABO银奖和铜奖,一名学员取得BBO金奖的佳绩。
5、物理辅导Dr. Qin南京大学物理专业本科,美国新泽西理工学院材料科学与工程博士,擅长Physics Bowl,PUPC,BPhO等物理类赛事,2017年有两位学生入围AIME,武汉外国语学校的一个班有六人入围Physics Bowl全球前一百,其中一位是华中赛区第三名。
以上这些机构排名不分先后,仅供参考!
NEC即全美经济学挑战赛(National Economics Challenge),是美国具有影响力的高中生经济学竞赛,每年都有上万名学生参与。NEC经济学竞赛的形式是团体赛形式,学生4人一组,先是参加各地区的选拔赛,然后晋级地区决赛,成绩好的队伍可以前往美国参加美国决赛。
学习amc课程的人还是很多的,怎么选择一个好的amc培训机构补习amc课程呢?下面小编给大家推荐一下深圳国际竞赛培训机构排名精选名单出炉
1.翰林国际教育amc辅导班
2.新东方amc辅导班
3.九天国际教育amc辅导班
4.A+未来国际教育amc辅导班
5.犀牛国际教育amc辅导班
6.唯寻国际教育
7.朗阁教育amc辅导
8.渊学通国际教育
9.翼考教育
10.环球教育
大家知道AMC是美国数学竞赛American Mathematical Competition的简称。1950 年美国数学协会Mathematics Association of America (简称MAA),开始举办美国高中数学考试(AHSME)。在1985年时,MAA又增加了初中数学的考试(AJHSME),2000年以后这些考试统一 被称为 AMC,AMC总部现设在美国加州內布拉斯加大学林肯校区。AMC考试包括AMC8、AMC10、AMC12、AIME、USJMO、USAMO。今天amc数学竞赛小编就和大家说一说AMC10|勾股定理中的乐趣有多少:
先来做个小练习:已知一个直角三角形两个斜边长分别是2和3,问斜边长为多少?
ok,现在你脑子里一定在想平方、开方的事了。可你有没有想过,为什么要平方和开方。
三角形斜边长的平方为什么就是两个直角边的平方和?谁先发现这个有趣性质的?
这就得从勾股定理这个名字讲起,古人把直角三角形较小的直角边叫做勾,较长的直角边叫做股,斜边叫做弦,描述三者关系的定理就叫勾股定理。早在春秋时期,它就被中国人发现,后记载于《九章算数》。
客观的说,虽然中国人早于西方发现这一性质,但最先将此性质推广到任意直角三角形并予以证明的是古希腊数学家毕达哥拉斯(Pythagoras) ,因此这个定理也叫做毕达哥拉斯定理 (Pythagorean Theorem) ,我们常见到的黄金分割、整数、分数这些概念也源于毕达哥拉斯学派。
这个定理怎么证明呢?中国古人的证法是用割补法,仅用正方形面积公式就能证明:
勾股定理新的证明方法不断被人想出,有趣的是,有个叫加菲尔德的人在用他的方法证出本定理5年之后,成为美国第20任总统,所以人们又称这个证法为“总统证法”。
利用梯形面积就是三个三角形面积之和,知道两式相等,然后解出这个式子↓↓
以上两个证法都是基于面积,如果用一些较为现代的数学工具,比如相似三角形 (similar triangles) 那么证明过程就会缩短不少:
事实上,勾股定理目前有500多种证法,是证明方法最多的数学定理之一。
知道了勾股定理的来源和证明,下面我们来看看它的应用:
一个重要性质(上图性质1)就是在直角三角形三边上做三个相似的图形,最大的图形面积等于两个小图面积之和(如下图右侧三个例子),证明思路是:相似图形面积比等于边长比的平方,而边长的平方之间的关系就是两个小的加起来等于大的。
如果做的图形是半圆,结合“直径所对的圆周角是直角”,可推出:以斜边为直径向内做半圆,会经过直角顶点(如下图)。再用面积做差,推出一个新的性质:两个“月牙”面积之和等于三角形面积。
在前面的例子中,我们知道如果一个三角形是直角三角形,那么它的三边 (a,b,c) 就满足 a 方加 b 方等于 c 方,并且在实际题目中,常常出现 (3,4,5)/(6,8,10)/(5,12,13)这样的 (a,b,c) ,这样满足勾股定理的整数,就叫“勾股数”(pythagorean triple) ,勾股数有两个基本性质
一:如果一组数是勾股数,那么它们的倍数依然是勾股数。
比如 (3,4,5) 是勾股数,那么 (6,8,10) / (9,12,15) / (12,16,20) 以及 (300,400,500) 一定都满足勾股定理,这些勾股数就构成了一类,即 (3k,4k,5k) 。换个角度讲,如果一组数中三个数可以约分,那么约分到互质 (relatively prime) 后的结果也是勾股数,而且这组勾股数是同类中最小的,这些已经互质的最小的勾股数叫做勾股方程的本原解。
二:所有的本原解可以被不重不漏地表示出。
其实我们就是就是想知道 “a 方加 b 方等于 c 方”这个方程有哪些互质的 (a,b,c) 解。利用数论知识可以求出,所有互质的解是:
也就是说,有了这个表达式,任意选取两个两个符合条件的 m,n 就能立马“生成”一组勾股数。
更直观来看,所有的勾股数,把两直角边的长度作为横纵坐标(下图是实轴坐标和虚轴坐标),就能把所有的勾股数画在图上,每组勾股数的(a,b,c)分别对应横坐标、纵坐标、到原点的距离,这三个量都是整数。
稍后会有专业老师给您回电
Copyright © sokr.cn 2016-2023 备案号:豫ICP备2023017942号
该文章由用户个人发布,本站只提供信息展示,如有侵权请及时联系下架!